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The Saha equation and the adiabatic exponent in shock 
wave calculations 

By RALPH A. ALPHER 
General Electric Research Laboratory, SchenectadJI, New York 

(Received 24 November 1956) 

The  purpose of this note is to comment on the calculation of equilibrium 
gas dynamic parameters behind strong shock waves. The  writer has been 
aroused by the appearance of a paper by Guman (1956) presenting a 
generalized computing scheme for ionizing shock waves in monatomic 
gases. I n  that paper the reader is not cautioned about including excited 
states in  the Saha equation for the computation of the degree of ionization 
behind shock fronts at appropriate temperatures and densities. The  same 
paper treats the adiabatic exponent y = cp/c,, as constant across strong 
shocks when at the same time it is implied that the computing scheme is 
of qeneral validity. Hence, the unwary reader might attempt to apply 
the scheme in a regime where y is not only no longer constant but is no 
longer a useful quantity for characterizing the shock conditions. Other 
authors (see, for example, Glass, Martin & Patterson (1953)) characterize 
AOKS in which a shock has excited internal degrees of freedom in terms 
of variable specific heat ratio when in fact one cannot use this quantity 
in calculating shock front conditions. 

The  following comments on some of these points are presented with 
apologies to those readers who are familiar with so-called real gas effects ; 
hoirever, the appearance of the material referred to above, as well as other 
examples in the literature, seems to require some comment. 

Let us consider first the Saha equation. In  a dilute electrically neutral 
gas in thermodynamic equilibrium at a temperature and density such that 
only neutral and singly ionized atoms are present, the concentrations 
(number density) of neutral atoms N,, of singly ionized atoms N,, and 
of electrons N,, are related by the Saha equation (see, for example, Aller 
(1953), or Fowler (1955)) 

where B, and BII are the partition functions for atoms and ions respectively, 
the factor 2 is the statistical weight for electrons, xr is the first ionization 
potential of the atom in question, and the other symbols have their usual 
meanings. At low temperatures and moderate densities, BII/BI is 
adequately approximated by the ratio of the statistical weights of the 
ground states, g,,/g,. At either higher temperatures or lower densities, 
significant population of excited states occurs, and BI,/BI must be computed 
more carefully. It may be noted that there appears to exist no unique and 
universally accepted procedure for computing B, and B I I .  Since the 

N,IN,INI = 2(2nme W h 2 P 2 [ B , h  V B h ,  T)lexp( - xI /KT) ,  (1) 
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partition functions for an isolated atom or ion diverge, one must invoke 
the presence of other neutral and charged particles in the gas to obtain a 
reasonable correction to the partition sums. The  recipes suggested by 
various investigators range widely in complexity (Bethe 1942 ; Fuchs, 
Lynch & Peierls 1942; Ecker & Weizel 1956; Meghreblian 1953; Unsold 
1948; Woolley 1955). Perhaps the simplest approach is to consider as 
bound to the atom or ion, and hence as contributing to bound-state 
partition sums, only those electrons whose classical orbits do not exceed 
half the mean separation of particles in the gas. Such an assumption, 
together with an adjustment in the statistical weight of the outermost 
orbit to allow for the fact that mean particle separation is not generally an 
integral number of Bohr radii, yields partition functions which agree 
satisfactorily with more detailed. analyses which involve not only this 
' pressure ionization ' but also electrostatic effects, modification of the 
more deeply bound energy levels, and correction of the partition function 
for free electrons (compare Fuchs, Lynch & Peierls (1942) and Bond 
(1954)). For example, the high temperature equation of state for argon 
computed by Bond (1954), using a 'pressure ionization' cut-off in the 
partition functions, agrees very well with shock wave measurements by 
Christian & Yarger (1955). We shalI not attempt here to review the 
literature on the computation of partition functions, but rather would 
recommend to the reader who must deal with calculations of ionization 
equilibrium the representative references which have been cited. 

1.33. 10-3 8 000 1.040 
1.33 10000 1.033 
2.66 12000 1.029 
2.66 ;< 16 000 1.029 
4.00 :< 20 000 1.065 
5.33 23 000 1-154 
5.33 '1: 25 000 1.225 

I 

10-1 50000 1.11 
10-1 75 000 1.26 
5 lo-' 50000 1.17 
5 = lo-' 75 000 1.40 
10-2 50 000 1.20 
10-2 75 000 1.47 
10-4 25 000 1.01 
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This quantity is tabulated in table 1 at several values of p and T for argon, 
based on partition functions computed by Bond (1954)) and for helium, 
based on calculations by the author and colleagues. Both involve the 
simple ' pressure ionization ' correction. Clearly a deliberate decision is. 
required before neglecting excited states in applying the Saha equation to. 
strong shock calculations. 

Let us now turn to the use of the adiabatic exponent y in the  
Rankine-Hugoniot relations. This index is usually introduced into the 
equations of conservation across a shock front by noting that the internal. 
energy of an ideal gas is written 

i f p  = kpv and y is a constant. If (5) is valid across the shock, the Hugoniot 
condition may be written 

-'2 ( p ,  - p,) (1 + '> = E2( 1 + A) - El( 1 + A) 
P1 Pz 

= (Ez-EJY. (6) 
However, if the gas is vibrationally or electronically excited, dissociated, 
or otherwise changed in composition, or ionized by the shock, the internal 
energy is no longer a simple function of p and p as in (5)) and the usual 

1 p(gm/cm3) 1 10-5 10-4 lo-" 10-2 10-1 

Helium, 25 OOOcK 1.46 1.52 1.58 1.62 
1.65 1.65 1.66 1.66 

1.53 1.42 1.44 1.50 1'26 1 Helium, 50 000 'K 1.22 1.16 1.17 

Air (dry), 3000°K Y 
Y' 

1.17 1.18 1.21 1.23 
1.24 1.27 1.30 1.30 

Table 2. The  data for air are taken from Gilmore (1955) and Hirschfelder 
& Curtiss (19.18). 

simplification of the shock front conservation relations by the introduction 
of 7 is no longer possible. One can discuss the strongly shocked gas in 
terms of a new quantity 8, as used by Rethe & Teller (1940), viz. 

or an ' effective specific heat ratio' y',  as used by Gilmore (1955) and 
Sanger-Bredt (1959, viz. 

These quantities require appropriate calculation of the high temperature 
thermodynamic properties of the gas. Note that for an ideal gas y' reduces 
to the usual y .  Using (8) one may develop shock front relations involving 
y i  for the unshocked gas (y ;  = y1 ordinarily) and y i  for the shocked gas 
( y i  + yz )  which will formally resemble relations one might write down 

P = 1 +pElP, (7) 

y' = p/(p- 1) = 1 +p/pE. (8) 



Ralph A. Alpher 

with y1 and yz. 
of y' in the form 

Solution of this for p 1 / p 2  will give an erroneous result if yi is taken as the 
specific heat ratio. To illustrate the errors possible, we present in table 2 
some comparisons of y and y'. 

Alternatively one may evaluate numerically the gas parameters behind 
a strong shock without introducing any special functions (see Resler, Lin 
& Kantrowitz (1952) and Romig (1956)). Evidently the principal use of 
the adiabatic index y in describing the thermodynamic state of a strongly 
shocked gas appears to be in calculating one of the sound velocities which 
may be defined (see Bethe & Teller (1940)). 

Thus the usual Hugoniot relation can be written in terms 

B [ ( P z - P , ) ( ~ l P , +  1/P2)l = EzY;-ElYl* (9) 
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